Deep Generative Models: Latent Diffusion Models

Fall Semester 2024

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS) [SEP]Rachleff University Professor, University of Pennsylvania Amazon Scholar & Chief Scientist at NORCE

Diffusion Models

• Derivation of Diffusion Models (Last Lecture)

- Markov Hierarchical Variational Auto Encoders (MHVAE)
- Diffusion Models are VAEs with Linear Gaussian Autoregressive latent space
 - Forward Process
 - Conditional Distributions for the Forward Process
 - Reverse Process
- ELBO for Diffusion Models is a particular case of ELBO for VAEs with extra structure
- Implementation Details

• Application of Diffusion Models (Today's Lecture)

- Stable Diffusion: Text-Conditioned Diffusion Model
- ControlNet: Multimodal Control for Consistent Synthesis

Stable Diffusion

- DDPM operates in pixel space: optimization takes hundreds of GPU days and inference is expensive.
 - 50k sample takes around 5 days on a single A100 GPU.
- To enable training of diffusion models on limited computational resources while retaining their quality and flexibility: SD performs denoising in the latent space of powerful pretrained autoencoders.
- Contribution:
 - 1. Denoising in the latent space enables spatial complexity reduction and detail preservation.
 - 2. Introducing cross-attention layers enables conditional input such as texts.

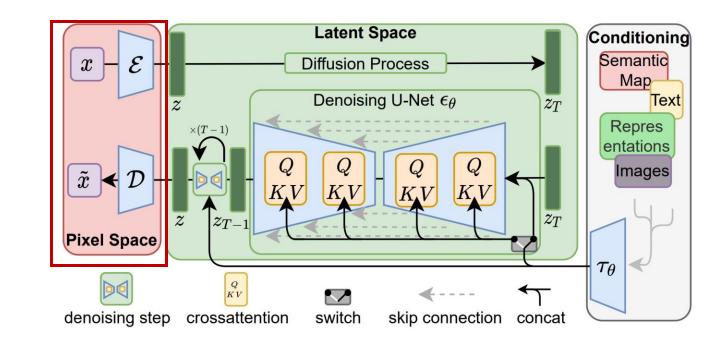
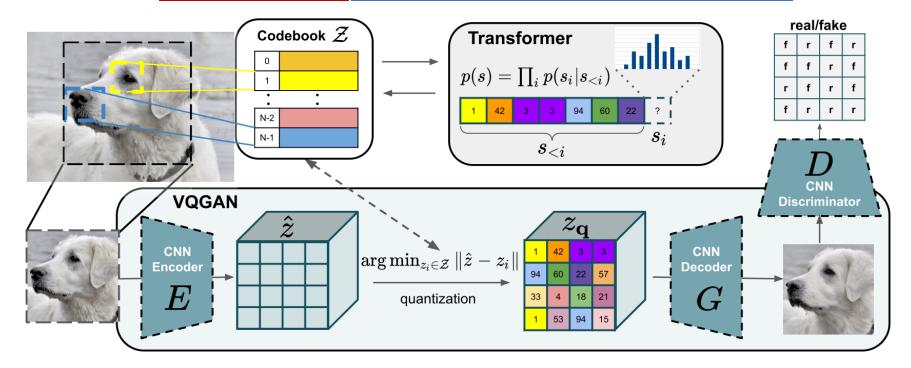
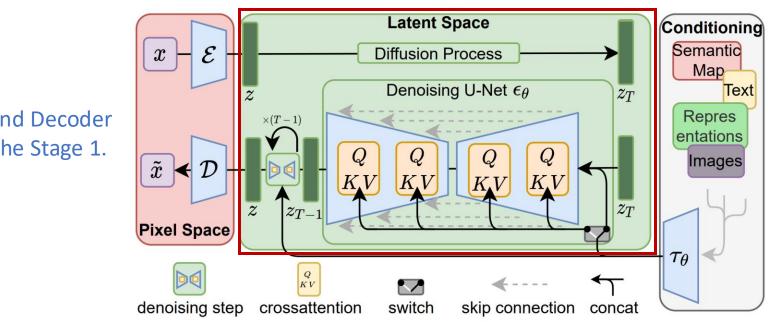



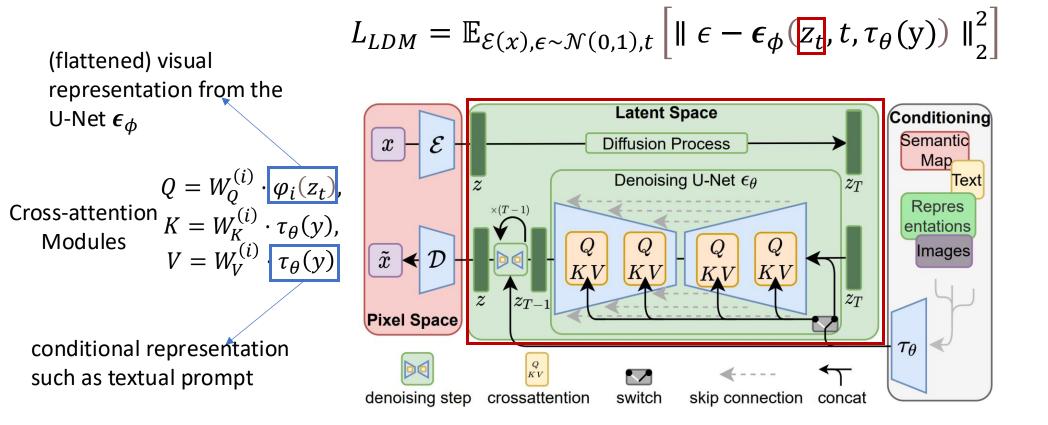
Figure 2. Illustrating perceptual and semantic compression: Most bits of a digital image correspond to imperceptible details. While DMs allow to suppress this semantically meaningless information by minimizing the responsible loss term, gradients (during training) and the neural network backbone (training and inference) still need to be evaluated on all pixels, leading to superfluous computations and unnecessarily expensive optimization and inference. We propose *latent diffusion models (LDMs)* as an effective generative model and a separate mild compression stage that only eliminates imperceptible details. Data and images from [29].


- (Stage 1) **Perceptual Image Compression**: The SD framework uses a pre-trained VAE to map data into a low-dimensional space and back to pixel space.
- Compared to the high-dimensional pixel space, the low-dimensional latent space is more suitable for likelihood-based generative models, as they can now (I) focus on the important, semantic bits of the data and (II) train in a lower dimensional and more computationally efficient space.

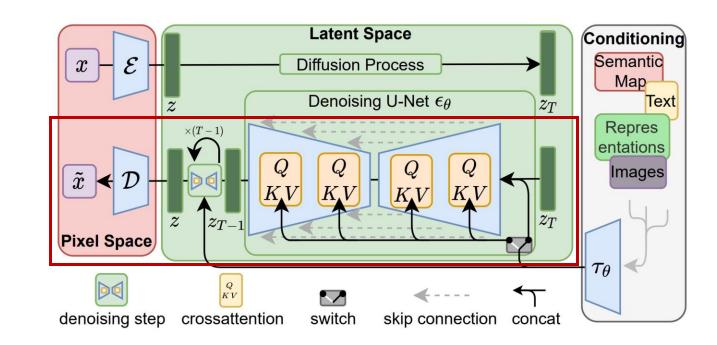

- (Stage 1) **Perceptual Image Compression**: The VAE is trained by a combination of a reconstruction loss and a patch-based adversarial loss.
- It deploys a VQGAN to learn a codebook of context-rich visual parts, whose composition is modeled with an autoregressive transformer architecture.

learn to reconstruct the image differentiate original images from reconstructions

$$L_{VQGAN} = \min_{E,G} \max_{D} \left(L_{rec}(x, G(E(x))) - L_{synthetic}(D(G(E(x)))) + L_{real} D(x) + L_{reg}(x; E, G)) \right)$$

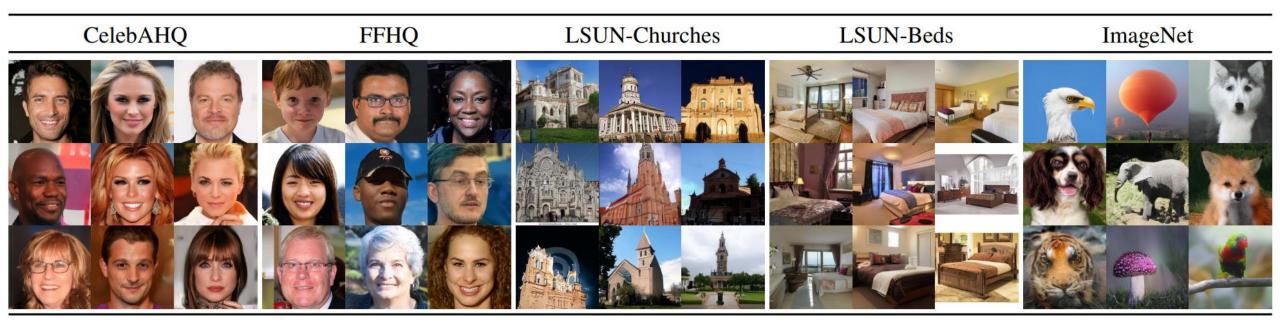


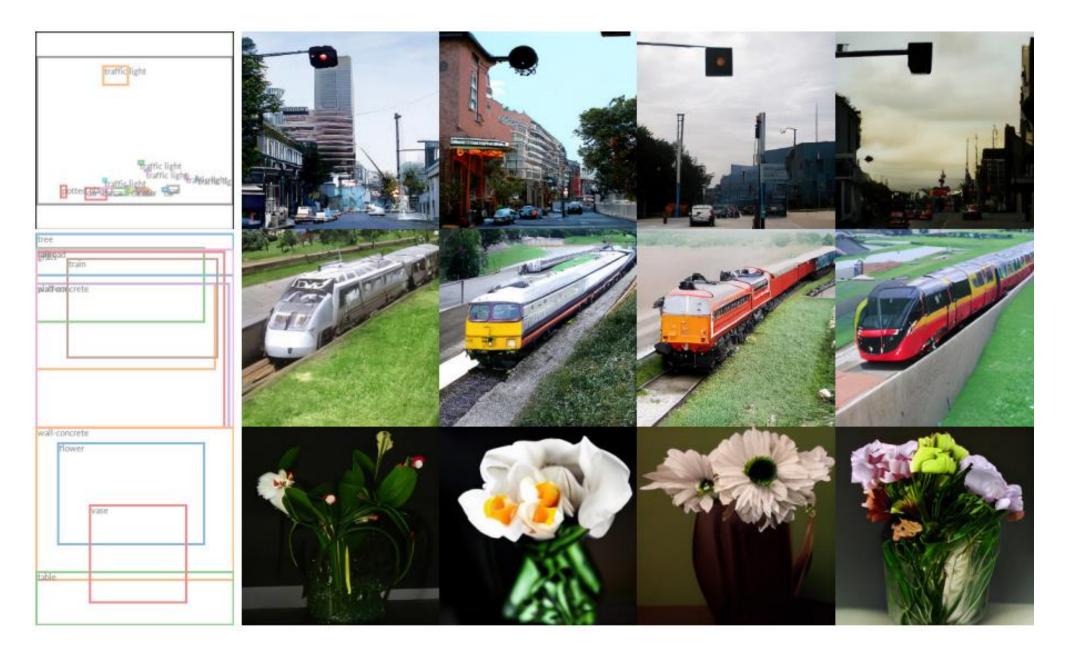
- (Stage 2) **Denoising Latent Representations**: the denoising happens in this compressed latent space given by Stage 1.
- Recall DDPM where we denoise in the image space. The SD is nothing more but denoising for the latent code.
- The forward process is to deterministically add T Gaussian noises to the original latent code z, and the reverse process learns to denoise.



Encoder and Decoder are from the Stage 1.

- The neural backbone of SD is a time-conditional U-Net $\epsilon_{\phi}(z_t, t, \tau_{\theta}(y))$, trained to predict the noise to be removed from the latent code z_t .
- SD augments the U-Net backbone with the cross-attention mechanism to receive conditions $\tau_{\theta}(y)$ such as textual prompts or semantic segmentations.


- (Stage 2) Generative Modeling of Latent Representations: the denoising happens in this compressed latent space given by Stage 1.
- Sampling of latent code: $z_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(z_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_{\phi}(z_t, t, \tau_{\theta}(y)) \right) + \sigma_t \varepsilon_t$ where y is the conditioning (e.g., textual prompt, semantic segmentation).
- Generating (decoding) the image: $\tilde{x} = D(z_0)$


Unconditional Generation

One can train a SD on a dataset of a visual domain without imposing extra conditions. Under such scenarios, the training of SD is similar to DDPM except that SD learns the denoising in quantized latent space.

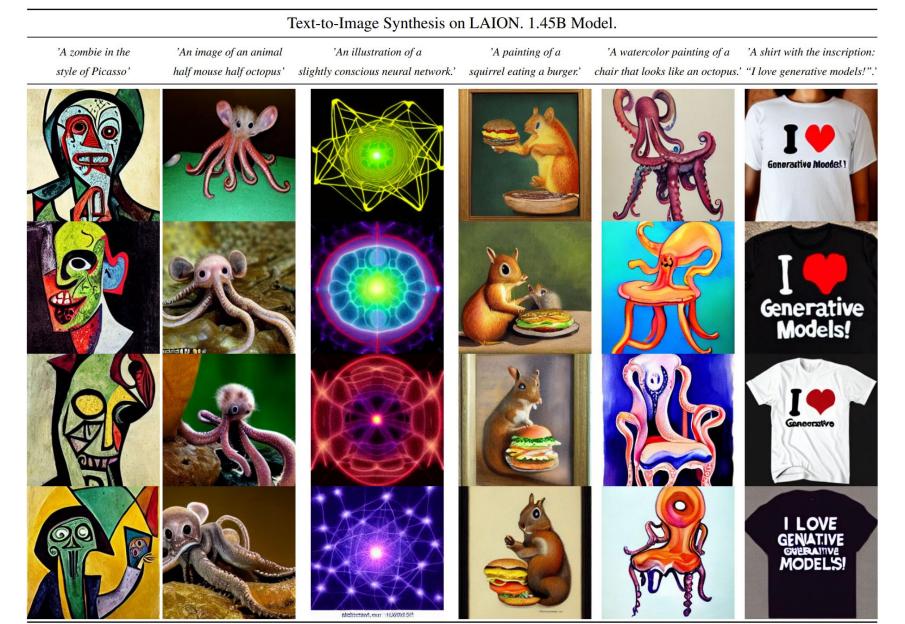

Here are samples from five unconditional stable diffusion models, each trained on a separate dataset.

Image Generation Conditioned on Layout

Image Generation Conditioned on Text

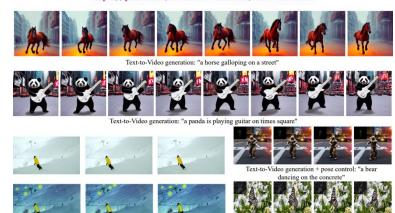
Details of this 1.45B Model Training: KL-regularized Text Conditioner: CLIP-like Dataset: LAION-400M

Hyper-Parameters for Implementation

Task	Text-to-Image	Layout-to-Image		Class-Label-to-Image	Super Resolution	Inpainting	Semantic-Map-to-Image
Dataset	LAION	OpenImages	COCO	ImageNet	ImageNet	Places	Landscapes
f	8	4	8	4	4	4	8
z-shape	$32 \times 32 \times 4$	$64 \times 64 \times 3$	$32 \times 32 \times 4$	$64 \times 64 \times 3$	$64 \times 64 \times 3$	$64\times 64\times 3$	$32 \times 32 \times 4$
$ \mathcal{Z} $	-	8192	16384	8192	8192	8192	16384
Diffusion steps	1000	1000	1000	1000	1000	1000	1000
Noise Schedule	linear	linear	linear	linear	linear	linear	linear
Model Size	1.45B	306M	345M	395M	169M	215M	215M
Channels	320	128	192	192	160	128	128
Depth	2	2	2	2	2	2	2
Channel Multiplier	1,2,4,4	1,2,3,4	1,2,4	1,2,3,5	1,2,2,4	1,4,8	1,4,8
Number of Heads	8	1	1	1	1	1	1
Dropout	-	-	0.1	-	-	-	-
Batch Size	680	24	48	1200	64	128	48
Iterations	390K	4.4M	170K	178K	860K	360K	360K
Learning Rate	1.0e-4	4.8e-5	4.8e-5	1.0e-4	6.4e-5	1.0e-6	4.8e-5
Conditioning	CA	СА	CA	СА	concat	concat	concat
(C)A-resolutions	32, 16, 8	32, 16, 8	32, 16, 8	32, 16, 8	-	-	-
Embedding Dimension	1280	512	512	512	-	-	-
Transformer Depth	1	3	2	1	-	-	-

Stable Diffusion as the Foundation Model

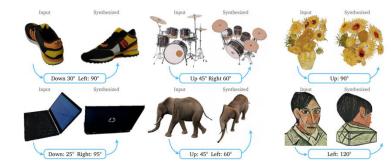
Representatives of generative vision works that take SD as the backbone:


DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

Ben Poole¹, Ajay Jain², Jonathan T. Barron¹, Ben Mildenhall¹ ¹Google Research, ²UC Berkeley {pooleb, barron, bmild}@google.com, ajayj@berkeley.edu

Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators

Levon Khachatryan^{1*} Andranik Movsisyan^{1*} Vahram Tadevosyan^{1*} Roberto Henschel^{1*} Zhangyang Wang^{1,2} Shant Navasardyan¹ Humphrey Shi^{1,3,4} ¹Picsart AI Resarch (PAIR) ²UT Austin ³U of Oregon ⁴UIUC https://dithub.com/Picsart-AI-Research/Text2Video-Zero



Video Instruct-Pix2Pix: "make it Van Gogh Starry Night style"

Text-to-Video generation + edge control: "white butter

Zero-1-to-3: Zero-shot One Image to 3D Object

Ruoshi Liu¹ Rundi Wu¹ Basile Van Hoorick¹ Pavel Tokmakov² Sergey Zakharov² Carl Vondrick¹ ¹ Columbia University ² Toyota Research Institute zero123.cs.columbia.edu

SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis

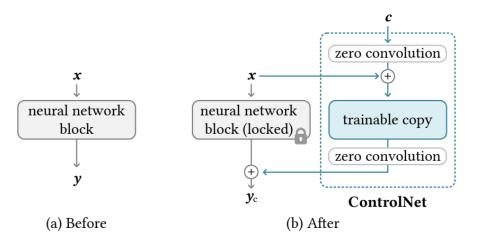
 Dustin Podell
 Zion English
 Kyle Lacey
 Andreas Blattmann
 Tim Dockhorn

 Jonas Müller
 Joe Penna
 Robin Rombach

 Stability AI, Applied Research
 Stability-AI/generative-models
 Model weights: https://huggingface.co/stabilityai/

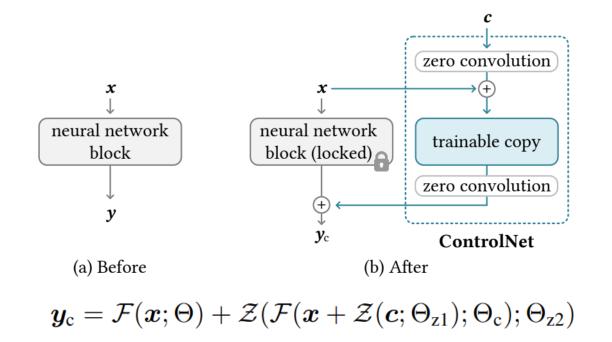
- Adding Conditional Control to Text-to-Image Diffusion Models
- ControlNet is a neural network architecture to add spatial conditioning to large pre-trained text-to-image diffusion models (e.g., Stable Diffusion).
- ControlNet allows users to add conditions like Canny edges or human pose to control the text-to-image synthesis.

Input human pose


Default

"chef in kitchen'

"Lincoln statue"


Key Intuitions of ControlNet

- Core idea:
 - ControlNet freezes the parameters Θ of the original generative neural block F_{Θ} and simultaneously clones the block to a trainable copy with parameters Θ_c .
 - The trainable copy takes an external conditioning vector *c* as input.
- Why it works well:
 - The locked parameters of a large model preserve the production-ready information with billions of images, while the trainable copy establishes a flexible learning paradigm for handling diverse input conditions.

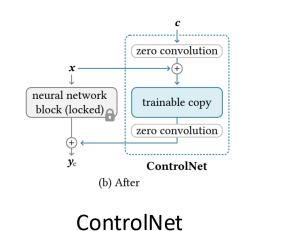
MLP Layers with Zero Initialization

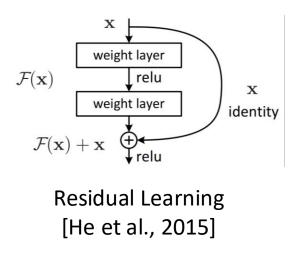
- The trainable copy is connected to the locked model with zero convolution layers, denoted $Z(\cdot;\cdot)$.
- Specifically, Z(·; ·) is a convolution layer or MLP layer with both weight and bias initialized to zeros.

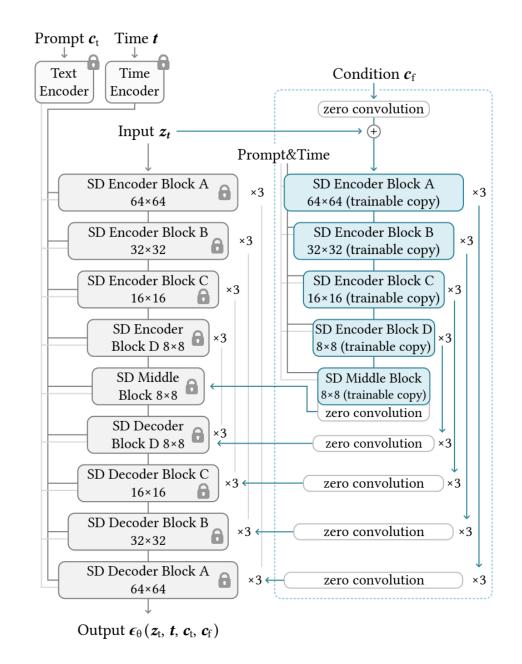
Gradient Calculation of A Zero Initialization Layer

• Consider a linear layer with weight W and bias B, at spatial position p and channel-wise index i. Given an input map $I \in \mathbb{R}^{h \times w \times c}$, the forward pass can be written as

$$\mathcal{Z}(\boldsymbol{I}; \{\boldsymbol{W}, \boldsymbol{B}\})_{p,i} = \boldsymbol{B}_i + \sum_j \boldsymbol{I}_{p,j} \boldsymbol{W}_{i,j}$$

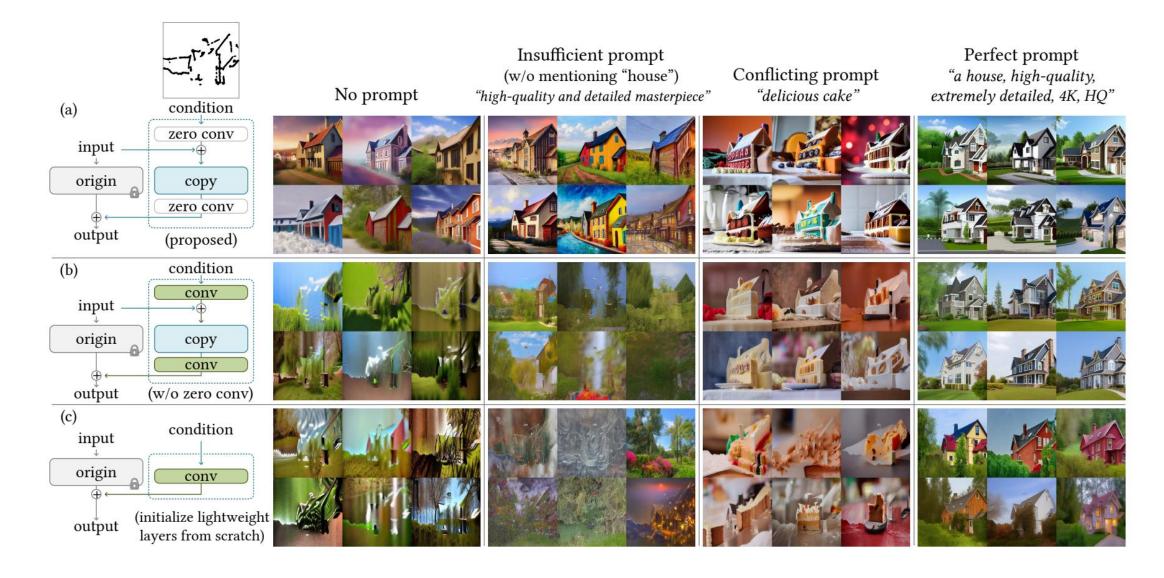

• A zero Initialization layer is initialized with W = 0 and B = 0. The gradient for anywhere that $I_{p,i} \neq 0$ is that:


$$egin{aligned} & egin{split} & rac{\partial \mathcal{Z}(oldsymbol{I};\{oldsymbol{W},oldsymbol{B}\})_{p,i}}{\partial oldsymbol{B}_i} = 1, \ & rac{\partial \mathcal{Z}(oldsymbol{I};\{oldsymbol{W},oldsymbol{B}\})_{p,i}}{\partial oldsymbol{I}_{p,i}} = \sum_j^c oldsymbol{W}_{i,j} = 0, \ & rac{\partial \mathcal{Z}(oldsymbol{I};\{oldsymbol{W},oldsymbol{B}\})_{p,i}}{\partial oldsymbol{W}_{i,j}} = oldsymbol{I}_{p,j}
eq oldsymbol{0}. \end{split}$$


• We see that the gradients for updating weight and bias are not always zero.

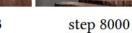
ControlNet for Stable Diffusion

- The ControlNet structure is applied to each encoder level of the U-Net.
- An analogy with Residual Learning:
- Original SD: Y = Generator(X)
- ControlNet: Y = Generator(X) + ControlNet(X, C)

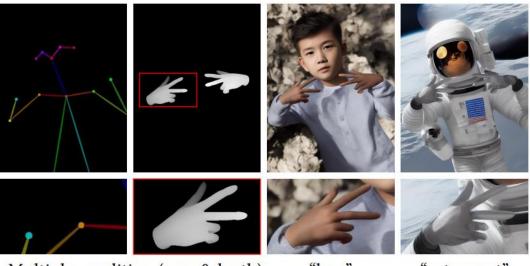


Does Zero Initialization Help?

• The ablation study indicates that zero initialization is beneficial for ControlNet.


Training Results

- ControlNet supports conditioning in multiple modalities.
- Examples: Canny edge, human pose.

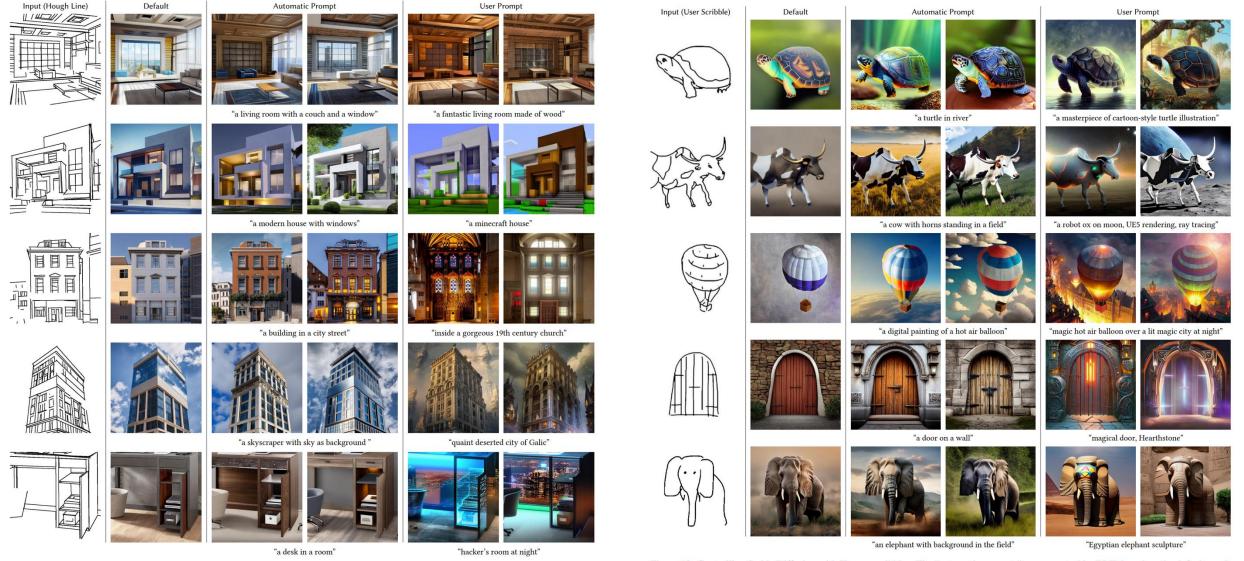


step 12000

(c) W/o CFG-RW (d) Full (w/o prompt) (b) W/o CFG (a) Input Canny map Figure 5: Effect of Classifier-Free Guidance (CFG) and the proposed CFG Resolution Weighting (CFG-RW).

"boy" "astronaut" Multiple condition (pose&depth) Figure 6: Composition of multiple conditions. We present the application to use depth and pose simultaneously.

Hough Lines and User Scribble



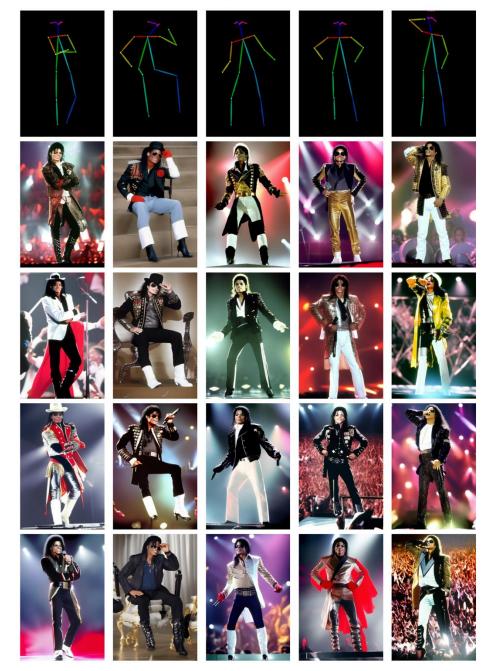

Figure 9: Controlling Stable Diffusion with Hough lines (M-LSD). The "automatic prompts" are generated by BLIP based on the default result images without using user prompts. See also the Appendix for source images for line detection.

Figure 10: Controlling Stable Diffusion with Human scribbles. The "automatic prompts" are generated by BLIP based on the default result images without using user prompts. These scribbles are from [19].

Segmentation and Human Pose

Figure 15: Controlling Stable Diffusion with ADE20K segmentation map. All results are achieved with default prompt. See also the Appendix for source images for semantic segmentation map extraction.

"Michael Jackson's concert"

Conclusion for Lectures in Diffusion Models

In the last lecture, we elaborate on the derivation of Diffusion Models from a VAE perspective. In this lecture, we introduce two mainstream applications of Diffusion Models with multimodal conditions:

Stable Diffusion

- 1. Denoising in the latent space enables spatial complexity reduction and detail preservation.
- 2. Introducing cross-attention layers enables conditional input such as texts.

ControlNet

- 1. Enabling fine-grained control through versatile conditions (e.g., sketches, outlines, keypoints)
- 2. Preserving pre-trained model knowledge while extending functionality.