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Diffusion Models

* Derivation of Diffusion Models (Last Lecture)

* Markov Hierarchical Variational Auto Encoders (MHVAE)

e Diffusion Models are VAEs with Linear Gaussian Autoregressive latent space
* Forward Process
e Conditional Distributions for the Forward Process
* Reverse Process

* ELBO for Diffusion Models is a particular case of ELBO for VAEs with extra structure
* Implementation Details

* Application of Diffusion Models (Today’s Lecture)
 Stable Diffusion: Text-Conditioned Diffusion Model
e ControlNet: Multimodal Control for Consistent Synthesis



Stable Diffusion

* DDPM operates in pixel space: optimization takes
hundreds of GPU days and inference is expensive.
* 50k sample takes around 5 days on a single A100 GPU.

* To enable training of diffusion models on limited
computational resources while retaining their
quality and flexibility: SD performs denoising in the
latent space of powerful pretrained autoencoders.

e Contribution:

1. Denoising in the latent space enables spatial
complexity reduction and detail preservation.

2. Introducing cross-attention layers enables conditional
input such as texts.
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Figure 2. Illustrating perceptual and semantic compression: Most
bits of a digital image correspond to imperceptible details. While
DMs allow to suppress this semantically meaningless information
by minimizing the responsible loss term, gradients (during train-
ing) and the neural network backbone (training and inference) still
need to be evaluated on all pixels, leading to superfluous compu-
tations and unnecessarily expensive optimization and inference.
We propose latent diffusion models (LDMs) as an effective gener-
ative model and a separate mild compression stage that only elim-
inates imperceptible details. Data and images from [29].



Stable Diffusion: Two-Stage Image Synthesis

* (Stage 1) Perceptual Image Compression: The SD framework uses a pre-trained
VAE to map data into a low-dimensional space and back to pixel space.

 Compared to the high-dimensional pixel space, the low-dimensional latent space
is more suitable for likelihood-based generative models, as they can now (I) focus

on the important, semantic bits of the data and (ll) train in a lower dimensional
and more computationally efficient space.
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Stable Diffusion: Two-Stage Image Synthesis

* (Stage 1) Perceptual Image Compression: The VAE is trained by a combination of
a reconstruction loss and a patch-based adversarial loss.

* It deploys a VQGAN to learn a codebook of context-rich visual parts, whose
composition is modeled with an autoregressive transformer architecture.

learn to reconstruct the image differentiate original images from reconstructions

LVQGAN — minE,G maxp (Lrec(xr G(E(x))) — Lsynthetic (D(G(E(x)))) + Lyeq D(x)|+ Lreg (xi E, G))
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Stable Diffusion: Two-Stage Image Synthesis

* (Stage 2) Denoising Latent Representations: the denoising happens in this
compressed latent space given by Stage 1.

* Recall DDPM where we denoise in the image space. The SD is nothing more but
denoising for the latent code.

* The forward process is to deterministically add T Gaussian noises to the original
latent code z, and the reverse process learns to denoise.
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Stable Diffusion: Two-Stage Image Synthesis

* The neural backbone of SD is a time-conditional U-Net €, (z;, t, T9(y)), trained to
predict the noise to be removed from the latent code z;.

* SD augments the U-Net backbone with the cross-attention mechanism to receive
conditions T4 (y) such as textual prompts or semantic segmentations.
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Stable Diffusion: Two-Stage Image Synthesis

* (Stage 2) Generative Modeling of Latent Representations: the
denoising happens in this compressed latent space given by Stage 1.

. 1 1
 Sampling of latent code: z,_; = E(Zt — Jﬁed)(zt,t Tg (y))) + o.&, Wherey is the

conditioning (e.g., textual prompt, semantic segmentation).
* Generating (decoding) the image: ¥ = D(z,)
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Unconditional Generation

One can train a SD on a dataset of a visual domain without imposing extra
conditions. Under such scenarios, the training of SD is similar to DDPM except
that SD learns the denoising in quantized latent space.

Here are samples from five unconditional stable diffusion models, each trained
on a separate dataset.

CelebAHQ LSUN-Churches LSUN-Beds ImageNet




Image Generation Conditioned on Layout




Image Generation Conditioned on Text

Text-to-Image Synthesis on LAION. 1.45B Model.

’A zombie in the "An image of an animal "An illustration of a ’A painting of a "A watercolor painting of a A shirt with the inscription:
chair that looks like an octopus.” “I love generative models!”.’

style of Picasso’ half mouse half octopus’  slightly conscious neural network.”  squirrel eating a burger.’

Details of this 1.45B Model

Training: KL-regularized L T - - :
& \ i = P Models!

Text Conditioner: CLIP-like
Dataset: LAION-400M

| LOVE
GENATIVE

CUERAIMVE

MODELS!




Hyper-Parameters for Implementation

Task Text-to-Image Layout-to-Image Class-Label-to-Image  Super Resolution  Inpainting  Semantic-Map-to-Image
Dataset LAION Openlmages COCO ImageNet ImageNet Places Landscapes
f 8 | 8 1 4 4 8
z-shape 32x32x4 64x64x3 32x32x4 64 x 64 x 3 64 x 64 x 3 64 x 64 x 3 32 x 32 x4
| Z] - 8192 16384 8192 8192 8192 16384
Diffusion steps 1000 1000 1000 1000 1000 1000 1000
Noise Schedule linear linear linear linear linear linear linear
Model Size 1.45B 306M 345M 395M 169M 215M 215M
Channels 320 128 192 192 160 128 128
Depth 2 2 2 2 2 2 2
Channel Multiplier 1,2,4.4 1,2,3,4 1,2,4 1,2,3,5 1,2,2.4 1,4,8 1,4,8
Number of Heads 8 1 1 1 1 1 1
Dropout - - 0.1 - - - -
Batch Size 680 24 48 1200 64 128 48
Iterations 390K 4.4M 170K 178K 860K 360K 360K
Learning Rate 1.0e-4 4.8e-5 4.8e-5 1.0e-4 6.4e-5 1.0e-6 4.8e-5
Conditioning CA CA CA CA concat concat concat
(C)A-resolutions 32,16, 8 32,16, 8 32,16, 8 32,16, 8 - - -
Embedding Dimension 1280 512 512 512 - - -
Transformer Depth 1 3 2 1 - - -




Stable Diffusion as the Foundation Model

Representatives of generative vision works that take SD as the backbone:

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

Ben Poole!, Ajay Jain?, Jonathan T. Barron', Ben Mildenhall

LGoogle Research, 2UC Berkeley
{pooleb, barron, bmild}@google.com, ajayj@berkeley.edu
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an orangutan making a clay bowl on a throwing wheel* 4 raccoon astronaut holding his helmet a blue jay standing on a large basket of rainbow macarons*

a corgi taking a selfie® a table with dim sum on it

a tiger dressed as a doctor*

e A&

a humanoid robot playing the cello®
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a chimpanzee dressed like Heary VIII king of England*
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a frog wearing a sweater® Sydney opera house, acrial view '

’
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an all-utility vehicle driving across a stream a baby bunny sitting on top of a stack of pancakes’
—

a bulldozer elearing away a pile of snow*

R MM

zoomed out view of Tower Bridge made out of gingerbread and candy® @ robot and dinosaur playing chess. high resolution® asquirrel gesturing in front of an easel showing colorful pie charts

aclassic Packard car®

asliced loaf of fresh bread

Text2Video-Zero:
Text-to-Image Diffusion Models are Zero-Shot Video Generators

SDXL: Improving Latent Diffusion Models for
High-Resolution Image Synthesis

Levon Khachatryan'*  Andranik Movsisyan'* Vahram Tadevosyan'* Roberto Henschel'*
Zhangyang Wang"? Shant Navasardyan' Humphrey Shi':**

!Picsart Al Resarch (PAIR)  *UT Austin  *U of Oregon  *UIUC

https://github.com/Picsart-AI-Research/Text2Video-Zero

Dustin Podell ~ Zion English  Kyle Lacey  Andreas Blattmann  Tim Dockhorn

Jonas Miiller Joe Penna Robin Rombach
Stability Al, Applied Research

Code: https://github.com/Stability-Al/generative-models Model weights: https://huggingface.co/stabilityai/

Text-to-Video generation + pose control: "a bear
dancing on the concrete"

A e 7 e,
Video Instruct-Pix2Pix: "make it Van Gogh Starry Night style” Text-to-Video generation + edge control: "white butterfly"

Zero-1-to-3: Zero-shot One Image to 3D Object

Ruoshi Liu' Rundi Wu' Basile Van Hoorick! Pavel Tokmakov? Sergey Zakharov? Carl Vondrick!
! Columbia University 2 Toyota Research Institute
zerol23.cs.columbia.edu

Input Synthesized

Input Synthesized Input Synthesized
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Adding Conditional Control to Text-to-Image Diffusion Models

* ControlNet is a neural network architecture to add spatial conditioning to large
pre-trained text-to-image diffusion models (e.g., Stable Diffusion).

* ControlNet allows users to add conditions like Canny edges or human pose to
control the text-to-image synthesis.
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ding Conditional Control to Text-to-Image Diffusion Models

[

Best Paper (Marr Prize)

Input Canny edge

Input human pose Default chef in kitchen” “Lincoln statue”



Key Intuitions of ControlNet

e Core idea:

* ControlNet freezes the parameters © of the original generative neural block Fg and
simultaneously clones the block to a trainable copy with parameters O..

* The trainable copy takes an external conditioning vector ¢ as input.

* Why it works well:

* The locked parameters of a large model preserve the production-ready information with
billions of images, while the trainable copy establishes a flexible learning paradigm for
handling diverse input conditions.
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MLP Layers with Zero Initialization

* The trainable copy is connected to the locked model with zero convolution layers,
denoted Z (-;-).

* Specifically, Z(-; -) is a convolution layer or MLP layer with both weight and bias
initialized to zeros.

ST l --------------- K

. [ zero convolution | |

! l g

neural network neural network trainable co
block block (locked) i PY
: [ :
l 4@ : [ zero convolution | :
¢ ; | :
N A

Ye ControlNet

(a) Before (b) After

Yo = F(x;0)+ Z(F(x+ Z2(¢;0,1);0.); O)



Gradient Calculation of A Zero Initialization Layer

* Consider a linear layer with weight W and bias B, at spatial position p and
channel-wise index i. Given an input map I € R"*W*¢ the forward pass can be

written as ¢
Z(I;{W ,B})p; = Bi + > I, ;W ;

j
* A zero Initialization layer is initialized with W = 0 and B = 0. The gradient for
anywhere that [, ; # 0 is that:

(OZ(I AW, B})pi
OB; ’
0Z(I;{W,B}),,
< oI, ; Z Wii =0,
DZ(I; {W,B}),.
L —1,.+#0.
\ aW@J P # 0

 We see that the gradients for updating weight and bias are not always zero.



ControlNet for Stable Diffusion

* The ControlNet structure is applied to each

encoder level of the U-Net.

* An analogy with Residual Learning:

Original SD: Y = Generator(X)

ControlNet: Y = Generator(X) + ControlNet(X, C)
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Residual Learning
[He et al., 2015]
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Does Zero Initialization Help?

* The ablation study indicates that zero initialization is beneficial for ControlNet.

/.
..,-—lT'" L, Insufficient prompt Perfect prompt
™=k (w/o mentioning “house”) Conflicting prompt “a house, high-quality,
I No prompt “high-quality and detailed masterpiece” “delicious cake” extremely detailed, 4K, HQ”
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Training Results

e ControlNet supports conditioning in
multiple modalities.

* Examples: Canny edge, human pose.

(a) Input Canny map  (b) W/o CFG (c) W/o CFG-RW  (d) Full (w/o prompt)

Figure 5: Effect of Classifier-Free Guidance (CFG) and the
proposed CFG Resolution Weighting (CFG-RW)).

Test input training step 100

“astronaut”

»

Multiple condition (pose&depth) “boy
BEEpST0 step133 e 8000 SEpI12000 Figure 6: Composition of multiple conditions. We present

the application to use depth and pose simultaneously.



Hough Lines and User Scribble

Input (Hough Line) Default Automatic Prompt User Prompt

Input (User Scribble) Default Automatic Prompt

User Prompt
N

=700~

“an elephant with background in the field” “Egyptian elephant sculpture

“a desk in a room” “hacker’s room at night”

Figure 10: Controlling Stable Diffusion with Human scribbles. The “automatic prompts” are generated by BLIP based on the default result

Figure 9: Controlling Stable Diffusion with Hough lines (M-LSD). The “automatic prompts” are generated by BLIP based on the default images without using user prompts. These scribbles are from [19].

result images without using user prompts. See also the Appendix for source images for line detection.



“Michael Jackson's concert”

n liiiiI lﬁ\

B
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Figure 15: Controlling Stable Diffusion with ADE20K segmentation map. All results are achieved with default prompt. See also the Appendix
for source images for semantic segmentation map extraction.




Conclusion for Lectures in Diffusion Models

In the last lecture, we elaborate on the derivation of Diffusion Models from a VAE
perspective. In this lecture, we introduce two mainstream applications of Diffusion
Models with multimodal conditions:

e Stable Diffusion

1. Denoising in the latent space enables spatial complexity reduction and detail
preservation.

2. Introducing cross-attention layers enables conditional input such as texts.

e ControlNet

1. Enabling fine-grained control through versatile conditions (e.g., sketches,
outlines, keypoints)

2. Preserving pre-trained model knowledge while extending functionality.



	Slide 1: Deep Generative Models: Latent Diffusion Models
	Slide 2: Diffusion Models
	Slide 3: Stable Diffusion
	Slide 4: Stable Diffusion: Two-Stage Image Synthesis
	Slide 5: Stable Diffusion: Two-Stage Image Synthesis
	Slide 6: Stable Diffusion: Two-Stage Image Synthesis
	Slide 7: Stable Diffusion: Two-Stage Image Synthesis
	Slide 8: Stable Diffusion: Two-Stage Image Synthesis
	Slide 9: Unconditional Generation
	Slide 10: Image Generation Conditioned on Layout
	Slide 11: Image Generation Conditioned on Text
	Slide 12: Hyper-Parameters for Implementation
	Slide 13: Stable Diffusion as the Foundation Model
	Slide 14: Adding Conditional Control to Text-to-Image Diffusion Models
	Slide 15: Key Intuitions of ControlNet
	Slide 16: MLP Layers with Zero Initialization
	Slide 17: Gradient Calculation of A Zero Initialization Layer
	Slide 18: ControlNet for Stable Diffusion
	Slide 19: Does Zero Initialization Help?
	Slide 20: Training Results
	Slide 21: Hough Lines and User Scribble
	Slide 22: Segmentation and Human Pose
	Slide 23: Conclusion for Lectures in Diffusion Models

